Search results for " HPDs"

showing 4 items of 4 documents

Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC

2020

The $3 \times 1 \times 1$ m$^3$ demonstrator is a dual phase liquid argon time projection chamber that has recorded cosmic rays events in 2017 at CERN. The light signal in these detectors is crucial to provide precise timing capabilities. The performances of the photon detection system, composed of five PMTs, are discussed. The collected scintillation and electroluminescence light created by passing particles has been studied in various detector conditions. In particular, the scintillation light production and propagation processes have been analyzed and compared to simulations, improving the understanding of some liquid argon properties.

photon: propagationPhotomultiplierCERN LabPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorstutkimuslaitteetPerformance of High Energy Physics DetectorPhase (waves)FOS: Physical sciencesCosmic rayNoble liquid detectors (scintillation ionization double-phase)Scintillator01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentationphysics.ins-detMathematical Physicsscintillation counterPhysicsScintillationTime projection chamberphotomultiplier010308 nuclear & particles physicsbusiness.industryhep-exDetectorScintillators scintillation and light emission processes (solid gas and liquid scintillators)Instrumentation and Detectors (physics.ins-det)time projection chamber: liquid argonNoble liquid detectors (scintillation ionization double-phase); Performance of High Energy Physics Detectors; Photon detectors for UV visible and IR photons (vacuum) (photomulti-pliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquidscintillators)Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)FIS/01 - FISICA SPERIMENTALEilmaisimetScintillation counterbusinesskosminen säteilyperformanceParticle Physics - Experiment
researchProduct

A laser-based system for a fast and accurate measurement of gain and linearity of photomultipliers

2018

This paper describes a method for the measurement of gain and linearity of photomultipliers (PMTs). Gain and linearity are two fundamental parameters to use properly a PMT in several physics experiments. In the developed system light is laser generated and adressed to the PMT through a set of optical fibers. The data acquisition system consists in a commercial 16 channel digitizer coupled to a custom front-end board. With the chosen digitizer the system is scalable to test up to 16 PMTs, with the aid of a light distribution system and a multi-channel version of the front-end board. Data analysis is performed by a custom acquisition software. A 1.5» Hamamatsu PMT is used to validate the syst…

PhotomultiplierOptical fiberMaterials scienceDistribution (number theory)Fiber Laservisible and IR photons (vacuum) (photomultipliers01 natural sciencesAnalogue electronic circuit030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences0302 clinical medicineData acquisitionOpticslawFront-end electronics for detector readout0103 physical sciencesPhoton detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Front-end electronics for detector readout; Analogue electronic circuits; Fiber LasersPhoton detectors for UVInstrumentationMathematical PhysicsFiber LasersData processing010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleLinearityLaserPhoton detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)HPDsAnalogue electronic circuitsothers)businessJournal of Instrumentation
researchProduct

A facility to validate photomultipliers for the upgrade of the Pierre Auger Observatory.

2020

The Pierre Auger Observatory is undergoing a major upgrade named AugerPrime with the primary aim to add sensitivity to the mass-composition discrimination of ultrahigh-energy cosmic rays. Two different photomultipliers will be added to each water-Cherenkov station of the surface detector of Observatory. To achieve the scientific goals of AugerPrime these photomultipliers have to ensure a linear response to input-light in a wide range. This paper describes a system developed for the validation of AugerPrime-photomultipliers.

PhysicsPierre Auger ObservatoryPhotomultiplierbusiness.industryLasersSettore FIS/01 - Fisica SperimentaleLaservisible and IR photons (vacuum) (photomultipliersPhoton detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)OpticsUpgradeHPDsFront-end electronics for detector readoutothers)businessPhoton detectors for UVInstrumentationMathematical PhysicsJournal of Instrumentation
researchProduct

Charge reconstruction in large-area photomultipliers

2018

Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction …

PhotomultiplierLiquid detectorsvisible and IR photons (vacuum) (photomultipliers HPDs others)Physics - Instrumentation and Detectorsgas and liquid scintillators)Physics::Instrumentation and DetectorsPhoton detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)FOS: Physical sciencesvisible and IR photons (vacuum) (photomultipliers HPDsScintillatorvisible and IR photons (vacuum) (photomultipliers01 natural sciencesParticle detectorNOsymbols.namesakeOptics0103 physical sciencesCalorimeter methods010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsPhysicsscintillation and light emission processes (solid gas and liquid scintillators)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleWiener filterDetectorReconstruction algorithmScintillators scintillation and light emission processes (solid gas and liquid scintillators)Instrumentation and Detectors (physics.ins-det)Scintillatorscintillation and light emission processes (solidCalorimeter methods; Liquid detectors; Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquid scintillators)Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)Neutrino detectorHPDsCalorimeter methodScintillatorsScintillators scintillation and light emission processes (solid gas and liquid scintillators)symbolsLiquid detectorCalorimeter methods; Liquid detectors; Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquid scintillators)Deconvolutionbusinessothers)scintillation and light emission processes (solid gas and liquid scintillators)
researchProduct